

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ПРЕДПРОФЕССИОНАЛЬНЫЙ ЭКЗАМЕН для учащихся инженерных классов (11 класс) города Москвы

Консультация «Решение задач по теоретической части предпрофессионального экзамена» (Информатика)

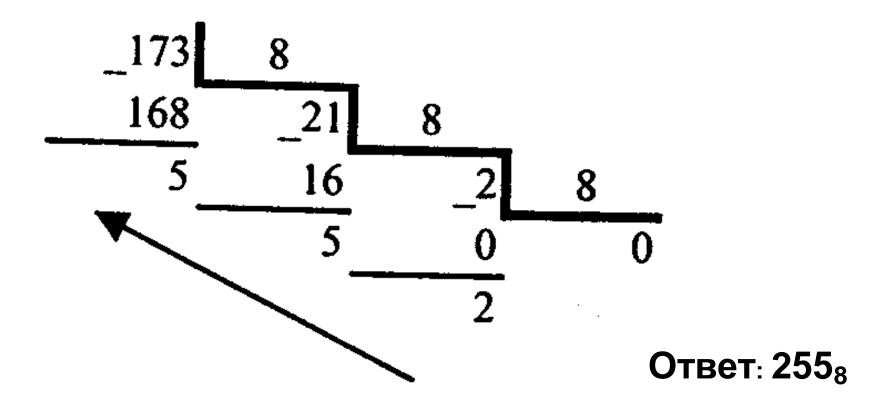
Авторы: *Калмыков Ю.В.*, *старший преподаватель* кафедры «Основы математики и информатики» СУНЦ МГТУ им. Н.Э. Баумана **Митрофанов М.С.**, ассистент кафедры «Основы математики и информатики» СУНЦ МГТУ им. Н.Э. Баумана

СИСТЕМЫ СЧИСЛЕНИЯ

Правило перевода из произвольной системы счисления в десятичную

Для того, чтобы перевести число из произвольной системы счисления в десятичную систему счисления, нужно сложить все произведения каждой цифры числа на основание системы счисления в степени соответствующего разряда.

Пример


$$1101_2 = 1.2^0 + 0.2^1 + 1.2^2 + 1.2^3 = 1.40 + 4.8 = 13_{10}$$

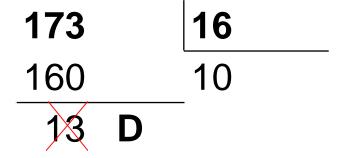
Правило перевода целого числа из десятичной системы счисления в произвольную:

- 1. Последовательно делим данное число и получаемые целые частные (выраженные цифрами десятичной системы) на основание новой системы счисления до тех пор, пока частное не станет равным нулю.
- 2. Полученные остатки, являющиеся цифрами числа в новой системе счисления, выражаем цифрами алфавита этой системы.
- 3. Составляем число в новой системе счисления, записав полученные остатки в обратной последовательности (т.е. начиная с последнего остатка).

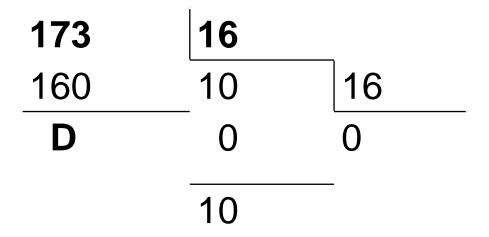
Пример 1.

Перевести число 173₁₀ в восьмеричную систему счисления.

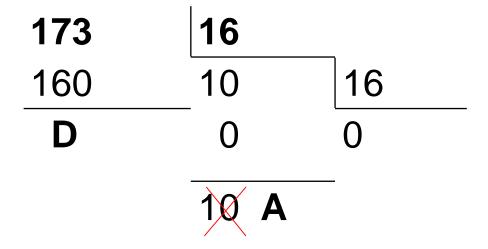
Можно записать по-другому.

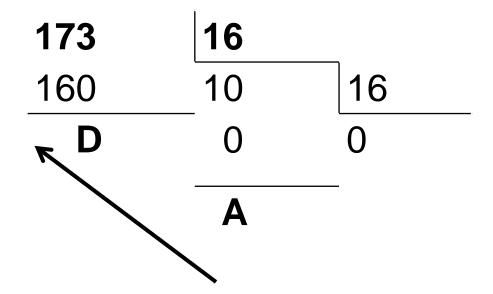

173	8	5 ↑
21	8	5
2	8	2
0		•

Ответ: 2558

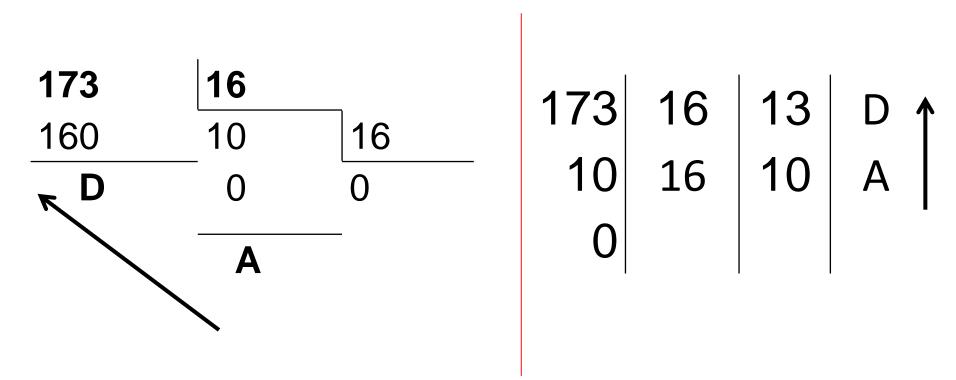

Перевести число 173₁₀ в шестнадцатеричную систему счисления.

173	16
160	10
13	


Перевести число 173₁₀ в шестнадцатеричную систему счисления.

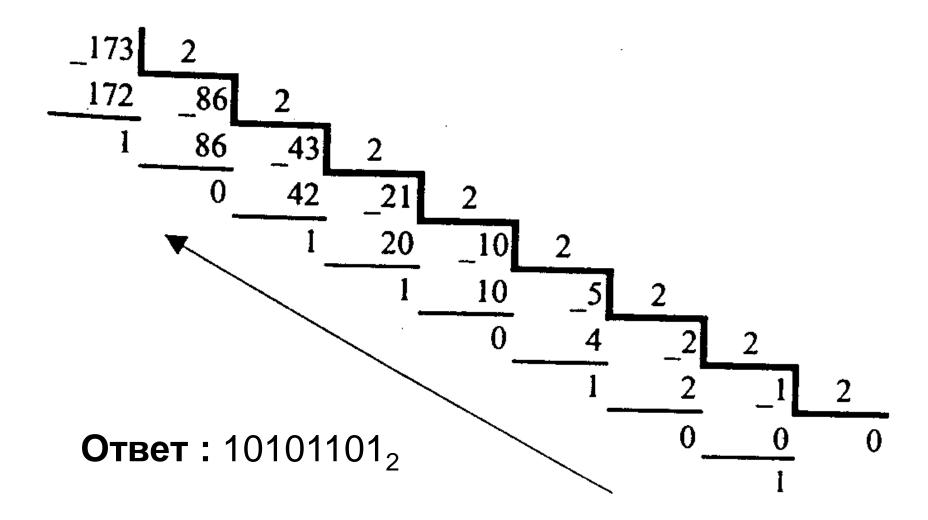

Перевести число 173₁₀ в шестнадцатеричную систему счисления.

Перевести число 173₁₀ в шестнадцатеричную систему счисления



Перевести число 173₁₀ в шестнадцатеричную систему счисления

Ответ: **AD**₁₆


Перевести число 173₁₀ в шестнадцатеричную систему счисления

OTBET: AD₁₆

Пример 3.

Перевести число 173₁₀ в двоичную систему счисления.

Для перевода числа из десятичной системы счисления в двоичную существует еще один способ.

При этом способе надо десятичное число представить суммой чисел, которые являются степенями двойки.

Если число есть в сумме, то на место соответствующего разряда в двоичной записи поставить 1, иначе поставить 0.

$$2^{0} = 1$$
 $2^{3} = 8$ $2^{6} = 64$ $2^{9} = 512$
 $2^{1} = 2$ $2^{4} = 16$ $2^{7} = 128$ $2^{10} = 1024$
 $2^{2} = 4$ $2^{5} = 32$ $2^{8} = 256$

Перевести число 173₁₀ в двоичную систему счисления.

128	64	32	16	8	4	2	1
27	2 ⁶	2 ⁵	24	2 ³	22	21	20

173=128+45

Перевести число 173₁₀ в двоичную систему счисления.

128	64	32	16	8	4	2	1
27	2 ⁶	2 ⁵	24	2 ³	22	21	20
1							

173=128+45

Перевести число 173₁₀ в двоичную систему счисления.

128	64	32	16	8	4	2	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
1	0	1	0				

Перевести число 173₁₀ в двоичную систему счисления.

128	64	32	16	8	4	2	1
27	2 ⁶	2 ⁵	24	2 ³	22	21	20
1	0	1	0	1	1	0	1

Если число близко к степени 2

Пример 5

Перевести число 517 в двоичную систему счисления

Решение

- 517=512+5
- $512=2^9=1000000000_2$
- 5=101₂
- Соответственно, при сложении единички добавятся в нулевой и второй разряд
- Получим 1000000101₂

Если число близко к степени 2

Пример 6

Перевести число 507 в двоичную систему счисления

Решение

- 507=512-1-4
- $512=2^9=1000000000_2$
- 512-1= 2⁹-1= 111111111₂
- 4=100₂
- Соответственно, при вычитании единичка удалится из в второго разряда
- Получим 1111111011₂

Родственные системы счисления

Системы счисления называют родственными, когда их основания являются степенями одного числа. Например, 2, 4, 8, 16.

10	2	4	8	16
0	0000	000	00	0
1	0001	001	01	1
2	0010	002	02	2
3	0011	003	03	3
4	0100	010	04	4
5	0101	011	05	5
6	0110	012	06	6
7	0111	013	07	7
8	1000	020	10	8
9	1001	021	11	9
10	1010	022	12	Α
11	1011	023	13	В
12	1100	030	14	С
13	1101	031	15	D
14	1110	032	16	Е
15	1111	033	17	F

- Для перевода из двоичной системы следует разбить число на двойки (4-я), тройки (8-я) или четвёрки чисел (16-я), а затем подменить на соответствующие значения.
- $110100101_2 = 01.10.10.01.01 = 12211_4$
- $110100101_2 = 110.100.101 = 645_8$
- $110100101_2 = 0001.1010.0101 = 1A5_{16}$
- Переход из одной родственной системы в другую осуществляется транзитом через наименьшее основание, в нашем случае через двойку

- Понятно, что все эти рассуждения применимы и для систем счисления
- 3, 9, 27, 81
- 5, 25, 125
- и т.п.

Пример из демонстрационного варианта

• Играя в интерактивный квест, команда должна была открыть сейф с цифровым кодовым замком. Найдя подсказки, команда выяснила, что кодом является наименьшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 9 нулей. Команда справилась с заданием. Какой код она подобрала? В ответе запишите шестнадцатеричное число (основание системы счисления указывать не нужно).

- Очевидно, что здесь родственные системы 2-я и 16-я.
- Так как число четырёхзначное в шестнадцатеричной системе счисления, то в двоичной его можно представить в виде
- abcd efgh ijkl mnop
- Так как число должно быть минимальным, то нули должны располагаться как можно левее.
- 1 0000 0000 0111₂
- 1007₁₆

Соответственно, если необходимо найти максимальное число, то наоборот минимальные цифры смещаем вправо, а максимальные – влево.

Рассмотрим модификацию этой задачи

Играя в интерактивный квест, команда должна была открыть сейф с цифровым кодовым замком. Найдя подсказки, команда выяснила, что кодом является минимальное нечётное четырёхзначное число в девятеричной системе счисления, троичная запись которого содержит одну двойку и три значащих нуля. Команда справилась с заданием. Какое значение кода она получила? Ответ приведите в троичной и девятеричной системах счисления.

- Очевидно, что здесь родственные системы 3-я и 9-я.
- Так как число четырёхзначное в девятеричной системе счисления, то в троичной его можно представить в виде
- ab cd ef gh
- Так как число должно быть минимальным, то нули должны располагаться как можно левее, а двойка правее (но не забыть, что число нечётное).
- 1 00 01 12₃
- 1015₉

Соответственно, если необходимо найти максимальное число, то наоборот минимальные цифры смещаем вправо, а максимальные – влево.

Признаки чётности в различных системах счисления

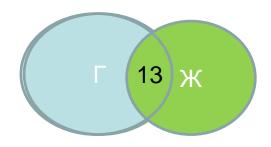
- В системах счисления с чётным основанием чётными являются числа, последняя цифра которых делится на 2 без остатка
- В системах счисления с нечётным основанием чётными являются числа, сумма цифр которых делится на 2 без остатка

Задачи на множества Круги Эйлера

Задачи на множества Круги Эйлера

Пример 1

Каждая семья из нашего дома выписывает газету или журнал, или и то и другое. 27 семей выписывают журналы, 75 семей – газеты. Лишь 13 семей и журналы, и газеты.


Сколько семей в доме?

Задачи на множества Круги Эйлера

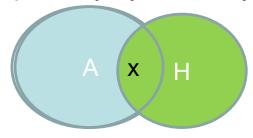
Пример 1

Каждая семья из нашего дома выписывает газету или журнал, или и то и другое. 27 семей выписывают журналы, 75 семей – газеты. Лишь 13 семей и журналы, и газеты.

Сколько семей в доме?

Г=75, Ж=27 Только газеты = 75-13=62

Только журналы = 27-13=14


Всего 62+14+13=89 семей

Пример 2 (из демонстрационного варианта)

Поток из 100 студентов сдавал экзамены. 88 студентов сдали английский язык, 71 студент сдали немецкий язык, 11 студентов не сдали ни одного экзамена. Какое количество студентов сдало экзамены и по английскому, и по немецкому языкам?

Решение

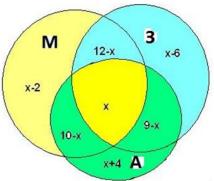
Похоже на предыдущую задачу

А=88, Н=71. Так как 11 не сдавало, то всего сдавало 100-11=89

Только английский = 88-х

Только немецкий = 71-х

Bcero (88-x)+(71-x)+x=89 => 159-x=89


Ответ x=70

Пример 3

В классе 30 человек. 20 из них коллекционируют марки, 15 — значки, 23 — автографы, 10 — и марки, и автографы, 12 — и марки, и значки, 9 — и автографы, и значки. Сколько человек коллекционируют и марки, и значки, и автографы?

<u>Решение</u>

Для решения воспользуемся кругами Эйлера:

Пусть х человек коллекционируют и марки, и значки, и автографы. Тогда коллекционируют

только марки и автографы — (10 - х) человек,

только значки и автографы — (9 - х) человек,

только марки и значки — (12 - х) человек.

Найдём, сколько человек коллекционируют только марки:

$$20 - (12 - x) - (10 - x) - x = x - 2$$

Аналогично получаем: x - 6 — только значки и x + 4 — только автографы, так как всего 30 человек, составляем уравнение:

$$X + (12 - x) + (9 - x) + (10 - x) + (x + 4) + (x - 2) + (x - 6) = 30.$$

Отсюда x = 3.

Вероятностный подход к определению количества информации

За единицу измерения информации принимается уменьшение неопределённости знаний человека в 2 раза.

Эта единица называется битом и является минимальной единицей информации.

Существует формула, которая связывает между собой количество возможных событий и количество информации.

N — количество возможных вариантов,

количество информации.

Если из этой формулы выразить количество информации, то получится

$$I = log_2 N$$
.

Неравновероятные события

В жизни же мы сталкиваемся не только с равновероятными событиями, но и событиями, которые имеют разную вероятность реализации.

Например:

Если в мешке лежат **20 белых шаров** и **5 черных**, то вероятность достать чёрный шар меньше, чем вероятность вытаскивания белого.

Как вычислить количество информации в сообщении о таком событии?

Для этого необходимо использовать следующую формулу:

$$\log_2 \frac{1}{p} = -\log_2 p$$

где

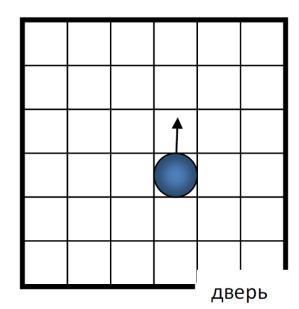
I – количество информации,

p - вероятность события.

Пример 1

- В корзине лежат 8 мячей разного цвета (красный, синий, желтый, зеленый, оранжевый, фиолетовый, белый, коричневый). Какое количество информации несет в себе сообщение о том, что из корзины будет вынут мяч красного цвета?
- Решение.
- Так как возможности вынуть мяч каждого из возможных цветов равновероятны, то для определения количества информации, содержащегося в сообщении о выпадении мяча красного цвета, воспользуемся формулой I= log₂N.
- Имеем I= log₂8= 3 бита.
- Ответ: 3 бита.

Пример 2


- В корзине лежат **8 черных шаров** и **24 белых**. Сколько информации несёт сообщение о том, что достали чёрный шар?
- Решение:
- 8+24=32 общее количество шаров в корзине;
- 8/32 = 0,25 вероятность того, что из корзины достали чёрный шар;
- $l = -log_2 0.25 = -(-2) = 2$ бита.
- Ответ: 2 бита

- У вычислителя две команды, которым присвоены номера:
- 1) прибавить 1;
- 2) возвести в квадрат.
- Первая из этих команд увеличивает число на 1, вторая возводит в квадрат. Программа для вычислителя - это последовательность номеров команд. Например, 211 — это программа «возвести в квадрат, прибавить 1, прибавить 1». Эта программа преобразует число 5 в число 27. Запишите программу для вычислителя, которая преобразует число 3 в число 101.

- Помещение разбито на клетки такого размера, что робот-пылесос (с помощью щеток) полностью очищает ту клетку, по которой он проходит или стоит (при его включении или при ударе о препятствие). Дверь в помещение открыта.
- В начале работы в памяти робота создается переменная k, равная нулю. Если в процессе уборки робот натыкается на препятствие, то при каждом ударе обо что-либо переменная k увеличивается на единицу.
- Роботу-пылесосу задается программа для уборки помещения, реализующая следующий алгоритм:
- «Иди вперед; в случае соударения повернуть по часовой стрелке на угол 90°*k».

- «Иди вперед; в случае соударения повернуть по часовой стрелке на угол 90°*k».
- На рисунке указан план помещения, выход из помещения, исходное расположение и направление робота.

•

• Сколько клеток помещения окажутся неубранными?

Прочие задачи

Пример из демонстрационного варианта

Прибор регистрирует количество людей, прошедших через рамку металлоискателя путём добавления этого количества к величине, хранящейся в памяти сумматора. Каждый час (в момент времени nm часов 00 минут 01 секунда) число из сумматора выводится на печать. За 1 января 2017 года распечатка содержит следующий набор данных:

20512	20612	20662	20692	20699	20753	20756	20759
20766	20777	20777	20781	20789	20790	20811	20812
20819	20821	20832	20835	20842	20849	20853	20891

Сколько человек зарегистрировал прибор за период с 7 утра до 7 вечера 1 января 2017 года?

<u>Решение</u>

На начало 7-го часа (07:00:00) было зарегистрировано 20756 человек, на конец 18-го часа, то есть в 19 часов – 20832 человек 20832-20756=76 человек

<u>Ответ</u> 76